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SUMMARY

In this work we propose new parallel numerical methods to solve certain evolutionary singularly per-
turbed problems in a robust and e�cient way. To get this, we �rstly consider a semidiscretization
in time using a simple fractional step Runge–Kutta method, where the splittings for the convection–
di�usion–reaction operator and the source term are subordinated to a decomposition of the spatial
domain in many smaller subdomains. Such semidiscretization procedure reduces the original problem
to a set of elliptic problems (in smaller subdomains), which can be solved in parallel, and it avoids
the use of Schwarz iterations. To discretize in space such problems we have considered classical linear
�nite elements on certain piecewise uniform meshes which have been constructed with a very simple
a priori criterion, similar to the one introduced by Shishkin for one-dimensional stationary problems of
this kind. We show that the use of these meshes permits to obtain uniformly convergent approximations
even in the boundary layer regions. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unsteady two-dimensional convection–di�usion–reaction phenomena can be modelled by
initial boundary value problems which admit the following formulation:

Find u : [t0; T ] → H such that
t ,→ u(t) ≡ u(�x; t)

du
dt

− ��u+ a(�x; t) · ∇u+ b(�x; t) u=f(�x; t); (�x; t) ∈ �×(t0; T ]

u(�x; t0)= u0(�x) ∈ H; �x ∈ �
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u(�x; t)= g(�x; t) ∈ Hb; (�x; t) ∈ 
×(t0; T ] (1)

Here, we will assume that � is a bounded convex open subset of R2 (�x ≡ (x; y)) with
a polygonal boundary 
 and that H and Hb are spaces of functions de�ned in � and 
,
respectively. We will suppose that the di�usion coe�cient �¿0 can take small values and
that the velocity �eld a ≡ a(�x; t)= (a1(�x; t); a2(�x; t)) and the reaction term b ≡ b(�x; t)¿0
are su�ciently smooth functions. We will also assume enough smoothness and compatibil-
ity among the source term f(�x; t) and the initial and boundary conditions u0 and g, re-
spectively, in order to guarantee that u ∈ C4;2( ��×[t0; T ]), i.e. that u is a function whose
derivatives up to order 4 in space and up to order 2 in time are continuous functions
on ��×[t0; T ].
It is well known that, when � is much smaller in size than ‖a‖, |b| or both, the solution

of (1) presents a multiscale character, i.e., certain narrow regions (called boundary or interior
layers) appear and in such regions the solution varies (in space) much more rapidly than in
the rest of the domain. The location and size of such layers depend on the behaviour of the
velocity �eld a. In this paper we will focus mainly on two cases: (1) a ≡ 0; b(�x; t)¿�¿0
(di�usion–reaction problem) and (2) ‖a‖¿�¿0, where each component (i=1; 2) veri�es
‖ai‖¿�i¿0 or ai=0 (convection–di�usion problem).
On the other hand, we consider a partition of 
 in three parts: 
=
i ∪ 
o ∪ 
c, where


i = {�x ∈ 
 : a(�x; t) · n¡0}, 
o = {�x ∈ 
 : a(�x; t) · n¿0} and 
c = {�x ∈ 
 : a(�x; t) · n=0}
are the input, output and characteristic boundaries, respectively (n denotes the unit outward
normal to 
). Assuming that the boundary condition imposed in (1) cannot have any dis-
continuity in 
i together with the previous hypotheses on the convection–reaction coe�cients,
it can be assured that interior layers are not present. With respect to boundary layers (see
Reference [1]), in the convection–di�usion case we have a regular layer in 
o, which is O(�)
in width, and also a parabolic layer in 
c (if it is present), whose width is O(

√
�); in the

di�usion–reaction case, a parabolic boundary layer, O(
√
�) in width, appears close to the whole

boundary. Furthermore, in both cases, various corner layers use to be present in the corners
of 
.
Classical numerical methods on a uniform mesh provide solutions which approximate very

badly to the exact solution in the layers. Moreover, in convection–di�usion problems, os-
cillations without any physical sense appear unless the chosen mesh is really �ne. This un-
stable behaviour can be eradicated using more advanced techniques such as upwinding or
streamline di�usion (see Reference [2]). In order to obtain schemes with the most desirable
property, that is the �-uniform convergence, two di�erent techniques have been deeply stud-
ied providing �tted operator methods and �tted mesh methods (see Reference [1]). The �rst
ones consist of di�erence operators on standard meshes which are exact for certain functions
that characterize the singular behaviour of the solutions. The second ones use a classical
method on a �tted mesh which is constructed using certain a priori or a posteriori criteri-
ons. In the �eld of a priori �tted meshes, where the Shishkin meshes are ones of the most
used due to their simplicity and low cost of construction, the case of �nite di�erences in
simple domains has been deeply studied. Here, we will extend these ideas to more gen-
eral domains by using simple �nite elements, which is the classical choice for complicated
geometries.
Concerning the �-uniform convergence, Andreyev (see Reference [3]) proves for the one-

dimensional convection–di�usion problem, that the use of suitable meshes implies that it is
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not necessary to use upwind techniques. Moreover, if a classical centred di�erence scheme
is used, although oscillations which are physically unrealistic continue appearing, they are
negligible in size and a uniformly convergent behaviour of the numerical solutions is proven
for a single linear problem like (1). We will apply these ideas to the two-dimensional case.
Obviously, it is very interesting to avoid these oscillations not only because the numerical
solution obtained possesses a better physical interpretation, but also because, as it is indicated
in Reference [4] for stationary problems, the iterative methods used to solve the resulting
linear systems converge much faster in the case of developing a monotone scheme. So, this
is a task which we think of developing in the future.

2. SEMIDISCRETIZATION IN TIME

For the time integration of problem (1) we propose the use of a fractional step Runge–Kutta
method (FSRK) which provides an algorithm of type domain decomposition whose cost in
terms of computational complexity is lower than the one obtained using classical domain
decomposition techniques (see References [5, 6]). In order to carry out such semidiscretization
in time we need to consider an additive splitting for the elliptic operator A(�x; t)= ��−a·∇−bI
and for the source term f. To specify such splitting we start considering the spatial domain
decomposed as follows: �=

⋃m
i=1 �i, where each subdomain �i consists of a set of mi disjoint

components �ij satisfying �i=
⋃mi

j=1 �ij. Associated with this decomposition, we construct a
smooth partition of unity, 1=

∑m
i=1 { i}m

i=1, in such a way that

 i(�x)=



0 if �x ∈ � \�i ;
1 if �x ∈ �i \

⋃m

j=1
j �=i

(�i ∩�j);

}
non-overlapped zones

hi(�x) if �x ∈
⋃m

j=1
j �=i

(�i ∩�j); overlappings
(2)

with 06hi(�x)61 and
∑m

i=1 hi(�x)=1 ∀ �x ∈
⋃m

j=1
j �=i

(�i ∩�j)

The chosen splittings are A(�x; t)=
∑m

i=1 Ai(�x; t), where Ai(�x; t)= � div( i(�x) · ∇)−  i(�x)a · ∇ −
 i(�x)bI and f(�x; t)=

∑m
i=1 fi(�x; t), where fi(�x; t)=  i(�x)f(�x; t).

Using these partitions, an FSRK method provides semidiscrete approximations of the exact
solution un ≡ un(�x)(≈ u(�x; tn)) which are obtained as follows:

Un; j = un + �
j∑

k=1
aik
jk

(
Aik (�x; tn; k)U

n; k + fik (�x; tn; k)
)

in �

Un; j = g(�x; tn; j) in 
; for j=1; : : : ; s
(3)

un+1 = un + �
s∑

j=1
bij
j

(
Aij(�x; tn; j)U

n; j + fij(�x; tn; j)
)
; n=1; 2; : : : ; N

where i• ∈ {1; : : : ; m}, tn= t0 + n�, tn; j= tn + cj� and N =[T=�].
It is interesting to notice that in the calculus of Un; j (internal jth stage), Aij(�x; tn; j) is the only

part of the operator A(�x; tn; j) which acts implicitly; due to its construction, this operator is null
in practically the whole domain. Consequently, when we combine one of these methods with
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a suitable spatial discretization, we obtain algorithms which in the jth fractionary step must
solve a linear system just in the subdomain �ij . Moreover, if this subdomain consists of the
union of several disjoint connected components, we can parallelize the necessary calculations.
Note also that this technique does not require the use of iterative Schwarz processes as it
happens in the classical domain decomposition techniques (see Reference [6]).

3. SEMIDISCRETIZATION IN SPACE

In order to obtain a totally discrete scheme, which approximates the exact solution of the
original problem (1), we must combine the previous time integration with a suitable dis-
cretization of the spatial variables. It is shown in Reference [7] that if we combine an FSRK
method which satis�es suitable absolute stability properties with a classical spatial discretiza-
tion scheme, the resulting numerical algorithm is unconditionally convergent, i.e. there is no
restriction between the sizes of the time step � and the mesh parameter h to obtain conver-
gence.
In this case, we have chosen to use linear �nite elements on certain special meshes based

on Shishkin proposals (see Reference [1]) that we describe below; the use of �nite elements
instead of �nite di�erences permits us to deal with problems whose spatial domain geome-
try can be much more complicated. Note that the construction of a special mesh using an
a priori criterion requires to possess quite deep knowledge of the continuous solution be-
haviour. In the well studied one-dimensional singularly perturbed problems, Shishkin proposes
the following special meshes (see Reference [1]). For a di�usion–reaction problem, we de-
�ne �1 = min{ 1

4 ;
1
�

√
� log(N )}, and the following piecewise uniform meshes (see Figure 1)

are considered for a segment l in length (N is the number of segment partitions, N = 4̇).
On the other hand, for a one-dimensional convection–di�usion problem which has positive
or negative convective term (|a(x)|¿�¿0), the following special meshes (see Figure 2) are
considered, where �2 = min{ 14 ; 1� � log(N )}.
We have extended these ideas to two-dimensional polygonal domains, starting from a coarse

triangulation, which de�nes the geometry, and performing a piecewise uniform or quasi uni-
form triangulation, where the transition segments are at a distance of the boundary segments
determined by the same parameters (�1 for the parabolic layers and �2 for the regular ones).
In Figures 3 and 4 we plot these meshes for a regular hexagon considering �=0:02 and
N =16.

�1 l (1−2�1) l �1 l

� �

N
4

N
2

subintervals N
4

Figure 1. Di�usion–reaction case.
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� �

3N
4

subintervals N
4

(1− �1) l �2 l

Figure 2. Convection–di�usion case.

Figure 3. Di�usion–reaction with �=1.

Figure 4. Convection–di�usion with a=(1; 0).

4. NUMERICAL EXPERIMENTS

In the examples included in this section we have chosen as spatial domain � the regular
hexagon with vertices (− 1

2 ;
√
3
2 ), (

1
2 ;

√
3
2 ), (1; 0), (

1
2 ;−

√
3
2 ), (− 1

2 ;−
√
3
2 ), (−1; 0). We will present

numerical results concerning the �-uniform convergence and not the computing speedup ad-

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1237–1243



1242 L. PORTERO AND J. C. JORGE

vantages provided by the possible parallelization of the necessary calculations. That is the rea-
son why we consider a very simple domain decomposition in six subdomains: �=

⋃6
i=1 �i,

each one of them consisting of just one connected component. Concretely, in both examples,
{�i}6i=1 are six equilateral triangles (whose three vertexes are the two vertices of one side of
the hexagon and its centre) extended with a band, which is d in width,‡ added along the
two sides of these triangles, which are inside of �, to form the overlappings.
Using the auxiliary function

g(w)=




0 if −
√
3
2
6w6−

√
3d
2

1
2
+

√
3
2d

w − 2
√
3

9d3
w3 if −

√
3d
2
6w6

√
3d
2

1 if

√
3d
2
6w6

√
3
2

we can de�ne the following smooth partition of unity related to such domain decomposition:

 1(x; y) = g(w1) g(w2)(1− g(w3));  4(x; y) = (1− g(w1))(1− g(w2)) g(w3)

 2(x; y) = g(w1) g(w2) g(w3);  5(x; y) = (1− g(w1))(1− g(w2))(1− g(w3))

 3(x; y) = (1− g(w1)) g(w2);  6(x; y) = g(w1)(1− g(w2))

where w1 =y; w2 = 1
2(y +

√
3x), and w3 = − 1

2 (y − √
3x).

Once the splitting for the operator and the source term is de�ned, as it was indicated in
Section 2, we will use as time integrator the �rst-order Fractionary Implicit Euler scheme
de�ned as

Un;0 = un

Un; j=Un; j−1 + �(Aj(tn+1)Un; j + fj(tn+1)); j=1; : : : ; 6

un+1 =Un;6

combined with linear �nite elements on the special meshes introduced in Section 3.

4.1. Di�usion–reaction example

We have considered a problem of type (1) where T =2, a ≡ 0, b=1, and f, u0 and g are
data chosen such that

u(x; y; t) = e−t(c1 + c2e−(
√
3−2y)=2√� + c3e−(

√
3+2y)=2

√
�)(c1 + c2e−(

√
3(1−x)−y)=2

√
�

+c3e−(
√
3(1+x)+y)=2

√
�)(c1 + c2e−(

√
3(1+x)−y)=2

√
�

+c3e−(
√
3(1−x)+y)=2

√
�); (c1; c2; c3 real constants)

‡For these numerical experiences we have chosen d= 1
8 .
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Table I. Global errors for the di�usion–reaction case.

N =4 N =8 N =16 N =32 N =64 N =128 N =256

�=1 9.975E-2 2.889E-2 9.931E-3 5.910E-3 3.936E-3 2.348E-3 1.261E-3
�=10−2 1.942E-2 1.336E-2 7.886E-3 4.262E-3 1.104E-3 4.141E-4 2.090E-4
�=10−4 5.489E-2 1.876E-2 7.931E-3 6.807E-3 2.994E-3 1.030E-3 3.372E-4
�=10−6 5.904E-2 2.087E-2 8.000E-3 6.808E-3 2.994E-3 1.030E-3 3.371E-4
�=10−8 5.947E-2 2.108E-2 8.008E-3 6.808E-3 2.994E-3 1.030E-3 3.371E-4

Table II. Global error estimates for the convection–di�usion case.

N =4 N =8 N =16 N =32 N =64

�=1 1.285E-2 3.288E-3 1.105E-3 5.740E-4 3.098E-4
�=10−2 1.855E-1 6.129E-2 2.368E-2 6.443E-3 1.537E-3
�=10−4 2.128E-1 1.183E-1 8.397E-2 4.983E-2 2.938E-2
�=10−6 2.120E-1 1.184E-1 8.495E-2 5.108E-2 3.109E-2
�=10−8 2.118E-1 1.182E-1 8.495E-2 5.108E-2 3.110E-2

is the exact solution. In Table I, we show the maximum global errors obtained for several
values of N (� is chosen in such a way that �N =0:2).

4.2. Convection–di�usion example

We consider now a problem of type (1) without known exact solution where T =2, a=(1; 0),
b=1, u0(�x) ≡ 0, g(t) ≡ 0 and f(x; y; t)=3 t e−3t+1 cos(�x) cos(�x+

√
3y

2 ) cos(�x−√
3y

2 ).
In Table II, we show the maximum global errors estimated for several values of N (�N =0:4),

such estimations have been computed using the double mesh principle in time and space (see
Reference [8]).
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